Syllabus BIBB-409-301 Clinical Research in Neuroscience

13 weeks

- 1. nuts & bolts of gathering evidence
 - a. course introduction
 - b. respect for the patient ethics, privacy, informed consent, etc.
 - c. prospective data collection
 - d. interviews
 - e. retrospective chart review
 - f. literature review (search strategies, supplementary data)
 - g. structured search & search terms
 - h. abstracting data
 - i. NCRD
- 2. evidence-based clinical research intro (neurosurgical slant)
 - a. med decisions: history, pyramid of authority
 - b. who makes decisions? patients, doctors, insurance co's, gov't?
 - c. why do research? evidence-based decisions
 - d. types of clinical trials & evidence; validity, precision, etc.
 - e. why research goes astray fraud, clinical equipoise, biases (list), recruitment, timing, funding, power
 - f. trial limitations (heterogeneity, dropouts, crossovers, black swans, etc.)
- 3. basic & translational research (Akiva Cohen, PhD)
 - a. platforms for basic neuroscience research (in vitro & in vivo)
 - b. making the transition
 - c. preclinical trials
 - d. intellectual property
- 4. philosophy, epidemiology & diagnosis
 - a. scientific truth & method
 - b. causation vs. association; scientific progress
 - c. prevalence, incidence, probability vs odds
 - d. diagnostic concepts (sensitivity, specificity, etc)
 - e. Bayesian quantification (conditional probability)
 - f. "Monty Hall" paradox
 - g. diagnostic "accuracy," operating characteristics
- 5. statistics in medicine
 - a. hypotheses & theories
 - b. outcome comparisons, null hypothesis
 - c. distributions, central limit theorem
 - d. missing data
 - e. filling in data (e.g. normal standard for missing s.d.)
 - f. data types: parametric vs. others
 - g. simple tests t-test, Chi-sq
 - h. quantification significant difference vs effect size
 - i. errors (type 1 & 2), power
 - j. efficacy, effectiveness

- k. regression, survival studies
- 6. Neurocritical care research; bioinformatics storing, manipulating and mining data (Joshua Levine, MD; Soojin Park, MD)
 - a. opportunities for research in NeuroICU
 - b. challenges of the ICU setting (care vs. research, consent, privacy, etc.)
 - c. architecture & examples of use in an ICU
 - d. creating a research database
 - e. searching and utilizing databases for research
 - f. challenges and obstacles
 - g. examples
- 7. planning clinical trials
 - a. important questions framing your hypothesis
 - b. literature review hypotheses
 - c. choosing what data you need (intent to treat)
 - d. outcome parameter(s)
 - e. power sample size
 - f. industrial research different motivations, financial incentives, regulation (details), ethics
 - g. Phases for drug clinical trials (I-IV)
- 8. meta-analysis pooling data from multiple trials
 - a. why done conflicting & underpowered trials
 - b. random vs. fixed-effects models
 - c. Forest diagrams
 - d. weighting pooled data
 - i. unweighted
 - ii. n-weighted
 - iii. variance-weighted
 - e. pooling observational data (Einarsson)
 - f. meta-regression
 - g. decision analysis
 - h. introduction why, comparative effectiveness
 - i. decision tree (exhaustive & mutually exclusive categories)
 - j. transition probabilities
 - k. utility & QOL
 - data sources: educated guess, single study, meta-analytic pooling
 - m. roll-back analysis
- 9. Advanced D/A topics
 - a. temporal effect LYs & QALYs
 - b. Markov processes
 - c. variance and uncertainty
 - d. sensitivity analysis
 - e. Monte Carlo simulation
- 10. Economics. Cost-Effectiveness
 - a. societal background
 - b. perspective
 - c. components

- d. determining costs
- e. incremental cost-effectiveness ratio (ICER)
- f. discounting
- g. willingness-to-payh. handling uncertainty
- i. examples
- 11. medical writing
 - a. manuscript structure
 - b. economy
 - c. style
- 12. review & present projects 13. review & present projects